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a b s t r a c t

Sudoku refers to a two-dimensional (2D) number-placement puzzle with simple constraints

that there are no repeated digits in each row, each column, or each block. Motivated by this Su-

doku configuration, we introduce a number of Sudoku associated matrix element representa-

tions besides the conventional representation using matrix row-column pair. Specifically, they

are representations via Sudoku matrix row-digit pair, digit-row pair, column-digit pair, digit-

column pair, block-digit pair, and digit-block pair. This means we can secretly represent matrix

elements via a Sudoku matrix, and furthermore develop new Sudoku associated 2D paramet-

ric bijections. To demonstrate the effectiveness and randomness of bijections, we introduce a

simple but effective Sudoku Associated Image Scrambler only using 2D Sudoku associated bi-

jections for image scrambling without bandwidth expansion. Simulations and comparisons

demonstrate that the proposed method outperforms several state-of-the-art methods.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

With the development of digital technologies in the last decade, many aspects of daily life are changed rapidly, for example,

paper letters are not used as often as in the last century, but email communications become one essential part for many people;

conventional films are almost not used in nowadays digital cameras, but memory cards in various types become the dominant

storage; signals of televisions now are not analog transmitted but digital transmitted in many cases; thick and heavy paper

books are not the first choice for many people, but electronic book readers like Kindle or IPAD are more popular. As emails,

digital images, digital books and other digital data carriers play an important role in people’s life, the demand on the secure

storage and transmission on digital data become a problem must be solved.

Digital images, one typical type of 2D data, are considered to contain a huge amount of information, for example, a family

photo might tell not only who are in this family and how they look like, but rough ages for each member and maybe their healthy

conditions; a diagnosis CT image might tell a doctor whether the patient is healthy or not and if he/she is sick how bad he/she is;

and a satellite photo might give information whether the interested region is under constructions and what these constructions

could be. Because the information contained in a digital image and the information might be inferred beyond a digital image, it

is very important to protect these information from any unauthorized use. One way of protecting digital images is called image

scrambling, which disorders pixel relationship in the original image so that the scrambled image with rearranged pixels become

unintelligent and unrecognizable.
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Mathematically speaking, all image scrambling algorithms rely on a 2D bijection, which maps pixels in the original im-

age to rearranged pixels in the scrambled image. According to the generation of a 2D bijection used in a scrambler, we can

classify a scrambler into groups: chaos based [25,30], spatial transform based [12,26], matrix decomposition based [20] and

cellular automata based [4,28]. According to the way that an image scrambler uses a 2D bijection, we can roughly classify

it into two groups: conventional scrambling [20] and total scrambling [4,25,26,28]. Conventional scrambling considers each

pixel an unit and only shuffles pixel positions, while total scrambling considers each bit of a pixel an unit and shuffles pixel

bit positions and pixel positions. Generally speaking, the total scrambling scheme is considered more secure than the conven-

tional scheme because image histograms have been changed after total scrambling, but stays unchanged after conventional

scrambling. Moreover, many recent research works have shown that image scrambling is an essential component for advanced

data protection techniques [3,6,7,9,16,18,19,27,29,31–33]. For example, in [8], a chaos-based image encryption algorithm, whose

fundamental is the image scrambling, was proposed; A image scrambling based blind watermarking algorithm was proposed

in [11].

In this paper, we extend our work in [22,24] and introduce new ways of constructing 2D bijections for digital image scram-

bling using Sudoku matrices. We demonstrate that an N × N Sudoku matrix can be used to define six new parametric ma-

trix element representations for an N × N matrix. Consequently, we are able to construct a 2D Sudoku associated bijection

by mapping one matrix element representation to the other. Moreover, we demonstrate that 2D Sudoku associated bijections

actually performs scrambling in a guarantee way. For example, the 2D Sudoku associated bijection mapping from the row-

digit pair to the row-column pair is to scramble image pixels in such a way that two pixels originally lies in the same col-

umn will be in different columns after scrambling, while the 2D Sudoku associated bijection mapping from the digit-column

pair to the row–column pair is to scramble image pixels in such a way that two pixels originally lies in the same row will

be in different rows after scrambling. In addition, we propose a total scrambling scheme Sudoku Associated Image Scrambler

only using on these 2D Sudoku associated bijections for scrambling. Simulation results on various image types and datasets

demonstrate the effectiveness and robustness of the proposed method. Visual and Analytical comparisons to peer algorithms

suggest that the Sudoku Associated Image Scrambler outperforms or reach state-of-the-art methods of image scrambling. Statis-

tical testing results also support that Sudoku Associated Image Scrambler successfully decorrelates pixels in the original image to

random-like.

The commonly used symbols and notations in this paper are given in Table 1. In the rest of the paper, Section 2 gives a

brief background about Sudoku matrices; Section 3 discusses the Sudoku associated matrix element representations and 2D

bijections; Section 4 proposes the Sudoku Associated Image Scrambler using 2D Sudoku associated bijections; Section 5 shows

extensive simulation results and compares the performance of Sudoku Associated Image Scrambler with peer algorithms in detail;

Section 6 concludes the paper.
Table 1

Description of symbols and notations.

Symbol Description

N a squared integer

I(.) an indication function on range {0, 1}

r row index of an element in a matrix

c column index of an element in a matrix

b block index of an element in a Sudoku matrix

g grid index of an element in a Sudoku matrix

d digit index of an element within a Sudoku matrix

Xr, c a pixel/element located at the intersection of the rth row and cth column of image/matrix X

S a Sudoku matrix

I the set of natural numbers from 1 to N

f a 2D bijection on I × I

f −1 the inverse bijection of f

fR→R′ a 2D bijection mapping from a representation R to R′
fR←R′ a 2D bijection mapping from a representation R′ to R

fix(.) rounding function towards to zero

rem(.) remainder function

F a fixed matrix element representation pair

P a matrix element parametric representation pair

RF a fixed matrix element representation using pair F

RS
P a matrix element representation using pair P with reference Sudoku S

◦ the function composition symbol

W the width of an image

H the height of an image

T the number of pixels of an image

K a scrambling key

�(.) the Gamma function

|.| the absolute value function

g(.) the Student’s t-distribution function
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(a) (b)

Fig. 1. A newspaper style Sudoku puzzle and its solution, (a) a Sudoku puzzle, and (b) its solution.
2. Background

The name Sudoku is the abbreviation of the Japanese ‘Sunji wa dokushin ni kagiru’, which means ‘single number’. Convention-

ally, Sudoku refers to a number-placement puzzle, consisting of 9 × 9 grids divided into nine 3 × 3 blocks [1]1. The objective is

to complete the grids using digits ranging from 1 to 9, in a manner that there are no repeated digits in any single row, column or

block of the overall puzzle.

Fig. 1 shows a Sudoku puzzle in a newspaper and its solution. The Sudoku hints given in Fig. 1(a) are identified by black

colored numerals; the nine Sudoku block indices are identified by the large blue colored numerals ranging from 1 to 9; and the

blank Sudoku elements in Fig. 1(a) are identified by red colored numerals in Fig. 1(b), respectively. This is a conventional Sudoku

puzzle, with a size of 9 × 9, to be filled with digits ranging from 1 to 9, and divided in square blocks of size 3 × 3.

In this paper, we are interested in a Sudoku solution instead of a Sudoku puzzle, because multiple Sudoku puzzles can be made

with respect to a single Sudoku solution, and it is the Sudoku solution that satisfies all digit constraints along rows, columns and

blocks. Specifically, we consider a Sudoku solution from a viewpoint of matrix and thus call it a Sudoku matrix. It is noticeable

that one can easily extend the conception of a 9 × 9 Sudoku matrix to other squared sizes, e.g. 4 × 4, 16 × 16, 25 × 25 etc.

Fig. 2 shows examples of large-size Sudoku matrices. Therefore, we can define an N × N Sudoku matrix with N = n2 as shown in

Definition 1.

3. Methodology

In this section, we mainly explore the possible matrix representations associated with a Sudoku matrix. And we show that

element-wise mapping between any of two representations is actually a bijection, which ensures to shuffle and restore image

pixels in an easy way.

3.1. Sudoku matrix

An N × N matrix is a Sudoku matrix if and only if its elements satisfy the constraints that the matrix elements in any row, and

in any column, and in any n × n block contain exactly N digits from 1 to N.

Mathematically, we can define an N × N squared size Sudoku matrix via an indicator function I as follows:

IX(r, c, d) =
{

1, if Xr,c = d

0, Otherwise
(1)

where r, c and d denote the row index, column index, and digit index of a matrix element in matrix X; and Xr, c denotes the

element at the intersection of the rth row and cth column in X. Let I = {1, 2, . . . , N} be the index set. Then

Definition 1 (Sudoku Matrix). An N × N matrix S is a Sudoku matrix if and only if

• For arbitrary c, d ∈ I, we have
∑N

r=1 IS(r, c, d) = 1

• For arbitrary r, d ∈ I, we have
∑N

c=1 IS(r, c, d) = 1

• For arbitrary b, d ∈ I, we have
∑N

g=1 IS(b
g
r , b

g
c, d) = 1

where r, c, b and d denotes the row index, column index, block index and digit index, respectively; b
g
r and b

g
c denote the row index

and the column index of the gth grid in the bth block.
1 In some literatures, this 3 × 3 block is referred as a box, or a square.
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(a)

(b)

Fig. 2. Sudoku matrices with large sizes of (a) 25 × 25 and (b) 36 × 36.
An N × N Sudoku matrix conforming Definition 1 has the properties including, but not limited to the four listed below

• The N elements within each row of this Sudoku matrix is a permutation of the integer sequence {1, 2, . . . , N}
• The N elements within each column of this Sudoku matrix is a permutation of the integer sequence {1, 2, . . . , N}
• The N elements within each block of this Sudoku matrix is a permutation of the integer sequence {1, 2, . . . , N}
• A subset of N × N Sudoku matrices can be parametrically generated [24]

The first three properties are directly from the definition of a Sudoku matrix. Solving a N × N Sudoku puzzle is NP-complete

[1,10], but it is possible to quickly generate a random N × N Sudoku matrix which belongs to special families (see detailed

methods in [21]), e.g. Keedwell Sudoku [13] and symmetric Sudoku [2].

In particular, the row index r and the column index c of the gth grid in the bth block are defined as follows,

f(b,g)→(r,c) :

{
be

r = rem(b − 1, n) · n + rem(g − 1, n) + 1

bg
c = fix(b − 1, n) · n + fix(g − 1, n) + 1

(2)

with the rounding function towards to zero fix(.), namely fix(p, q) = �p/q	 and the remainder function rem(.) , namely

rem(p, q) = p − fix(p, q) · q. In this way, we define the two-dimensional mapping from the Sudoku representation R(b, g) to the

conventional representation R(r, c). It is noticeable that this is a bijective mapping, and we can write the inverse mapping as

f(r,c)→(b,g) :

{
g = rem(r − 1, n) · n + rem(c − 1, n) + 1

b = fix(r − 1, n) · n + fix(c − 1, n) + 1
(3)

Although mathematically the bijective mapping between representation R(r, c) and representation R(b, g) can be explicitly writ-

ten as Eqs. (2) and (3), such bijective mapping is actually nothing but to link two representations with respect to each matrix

element.

Fig. 3 shows an example of matrix element representations R(r, c) and R(b, g) for a 4 × 4 matrix. As can be seen, the actual

mapping from representation R(r, c) to representation R(b, g) defined in Eq. (2) can be simply described to map an (r, c) pair in

Fig. 3(b) to its corresponding (b, g) pair in Fig. 3(c) with the same color. Similarly, the actual mapping from representation R(b, g)

defined in Eq. (3) to representation R(r, c) is to map a (b, g) pair in Fig. 3(c) to its corresponding (r, c) pair in Fig. 3(b) with the same

color. Consequently, the bijection between these two representations are shown in Fig. 3(d).

So far we have two matrix element representations, namely row-column pair representation R(r, c) and block-element pair

representation R(b, g). To differentiate from those representation associated with one or more Sudoku matrices, we call these

two representations fixed representations because they are fixed rather than parametric and use symbol F to denote a fixed

representation pair, i.e. F ∈ {(r, c), (b, g)}.
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(a) (b) (c)

(d)

Fig. 3. Matrix element representation example; (a) a 4 × 4 matrix with each element identified in a unique color; (b) the conventional row-column representa-

tion R(r, c); (c) the Sudoku representation R(b, g); and (d) the bijective mapping between matrix element representation R(r, c) and R(b, g) . .
3.2. Sudoku associated matrix element representations

Considering the task of digital image scrambling, the 2D bijection fR(r,c)←R(b,g)
and fR(r,c)→R(b,g)

are inappropriate in the sense

that such bijection is fixed. With the help of a Sudoku matrix, however, we are able to easily define 2D parametric bijections

between two matrix element representations.

Due to the digit constraints in each row, each column and each block within an N × N Sudoku matrix S, we are able to

create parametric matrix element representations for an N × N matrix using the reference Sudoku matrix S. Specifically, we

are able to have six parametric matrix element representations using the row-digit pair (r, d), digit-row pair (d, r), column-

digit pair (c, d), digit-column pair (d, c), block-digit pair (b, d) and digit-block pair (d, b). Intuitively, matrix elements can be

represented with the (r, d) pair, because each matrix can be decomposed with respect to rows, and each element in a row

is with a unique digit associated with a reference Sudoku in its row, implying that one can uniquely locate a matrix element

whenever he knows the row index r, the digit index d and the reference Sudoku matrix S. Similarly, it is not difficult to see that

other listed Sudoku associated pairs are also valid matrix element representations. We denote these Sudoku associated matrix

element representations as RS
P

where S is the associated Sudoku matrix and P denotes a Sudoku associated representation pair,

i.e. P ∈ {(r, d), (d, r), (c, d), (d, c), (b, d), (d, b)}.

Fig. 4 shows the six Sudoku associated matrix element representations for a 4 × 4 matrix, when the reference Sudoku S shown

in Fig. 4(b) is used. Each representation is able to uniquely locate an element in M.

Besides the existence of the six Sudoku associated matrix element representations, the Sudoku associated matrix element

representation could be quite different when the reference Sudoku matrices are different. Here is a simple example illustrating

this fact for interested elements in a 4 × 4 matrix. Fig. 5(a) shows our interested elements, and (b), (c), (d) give three reference

Sudoku matrices. For each interested element, we are then able to represent it with various Sudoku associated matrix element

representations. For example, the green element located at (2, 3) in the conventional row–column representation is denoted

as (2, 2) by using the (r, d) representation pair associated with Sudoku matrix S1, because the element located at row index

r = 2 and digit index d = 2 in S1 is the green element. In the same manner, this green element can be also denoted as (4, 3) by

using the representation R(d, b) associated with Sudoku matrix S3. And Table 2 shows the six matrix element representations for

interested elements associated reference Sudoku matrices S1, S2 and S3. As can be seen from this table, a matrix element can

be represented with different Sudoku associated representation pairs including (r, d), (d, r), (c, d), (d, c), (b, d) and (d, b); and

can also be represented differently by one Sudoku associated matrix element representation, if the associated reference Sudoku

matrix changes. The reason behind these differences is that different Sudoku matrices have different digits in a grid. Moreover,

due to the fact that these Sudoku associated matrix element representations are sensitive to the reference Sudoku matrix, we

are therefore able to construct parametric 2D bijective functions for image scrambling.

It is clear that for each Sudoku matrix, there are six associated matrix element representations. Because any two matrix

element representations denote the same set of matrix elements, a bijective mapping can be then constructed correspondingly

like what we showed in Fig. 3(d). Since we have two fixed matrix element representations, namely row–column pair and block-

grid pair, we are able to construct two new bijections denoted as f
RS

P
→RF

by mapping from the Sudoku associated matrix element

representation RS
P

to the two fixed representations RF, and other two new bijections by mapping from two fixed representations

to the Sudoku associated matrix element representation denoted as f
RS ←RF

, where S denotes the reference Sudoku matrix, R

P
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(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 4. Sudoku associated matrix element representations; (a) a 4 × 4 matrix M with elements identified in distinctive colors, (b) reference Sudoku matrix S, and

matrix element representations (c) RS
(r,d)

; (d) RS
(d,r)

; (e) RS
(c,d)

; (f) RS
(d,c)

; (g) RS
(b,d)

; and (h) RS
(d,b)

.

(a) (b) (c) (d)

Fig. 5. A 4 × 4 matrix with colored elements and three reference Sudoku matrices; (a) interested matrix elements identified by colors, and reference Sudoku

matrices (b) S1; (c) S2, and (d) S3.

Table 2

Matrix element representations associated with a reference Sudoku matrix.

S1 S2 S3

Representation pair

(r, d) (2, 3) (2, 2) (3, 4) (3, 1) (2, 4) (2, 3) (3, 1) (3, 2) (2, 3) (2, 4) (3, 4) (3, 3)

(d, r) (3, 2) (2, 2) (4, 3) (1, 3) (4, 2) (3, 2) (1, 3) (2, 3) (3, 2) (4, 2) (4, 3) (3, 3)

(c, d) (2, 3) (3, 2) (2, 4) (3, 1) (2, 4) (3, 3) (2, 1) (3, 2) (2, 3) (3, 4) (2, 4) (3, 3)

(d, c) (3, 2) (2, 3) (4, 2) (1, 3) (4, 2) (3, 3) (1, 2) (2, 3) (3, 2) (4, 3) (4, 2) (3, 3)

(b, d) (1, 3) (3, 2) (2, 4) (4, 1) (1, 4) (3, 3) (2, 1) (4, 2) (1, 3) (3, 4) (2, 4) (4, 3)

(d, b) (3, 1) (2, 3) (4, 2) (1, 4) (4, 1) (3, 3) (1, 2) (2, 4) (3, 1) (4, 3) (4, 2) (3, 4)
denotes a matrix element representation, P denotes a Sudoku associated representation pair with P ∈ {(r, d), (d, r), (c, d), (d, c),

(b, d), (d, b)}, and F denotes a fixed matrix element representation with F ∈ {(r, c), (b, g)}. In summary, the total number Sudoku

associated bijections can be directly constructed between a Sudoku associated matrix element representation to a fixed element

representation is 6 × 2 × 2 = 24.

Fig. 6 shows a naive one step image scrambling using the twenty-four Sudoku associated bijections. As can be seen from

these results, different Sudoku associated bijections scramble the original Trees image differently. For example, the bijections

f
RS
(r,d)

→R(r,c)
and f

RS
(r,c)

←R(r,d)
shuffle image pixels within each row; the bijections f

RS
(d,c)

→R(r,c)
and f

RS
(d,c)

←R(r,c)
shuffle image pixels

within each column; the bijections f
RS
(d,b)

→R(b,g)
and f

RS
(d,b)

←R(b,g)
shuffle image pixels within each 16 × 16 block. It is also noticeable

that f
RS
(d,b)

→R(b,g)
, f

RS
(d,c)

→R(b,g)
, and f

RS
(d,r)

→R(b,g)
are the three most powerful bijections that scramble the original Trees image to

almost random-like from the viewpoint of human vision inspection.
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Fig. 6. One-step image scrambling results using the Sudoku associated bijections (a) input image, 256 × 256 Trees; (b) a 256 × 256 Sudoku matrix S;

(c) scrambling results with the twelve bijections fRS
P
→RF

; and (d) scrambling results with the twelve bijections fRS
P
←RF

.

Table 3

The number of 2D bijective mappings associated with Sudoku ma-

trices

# of 2D bijections: N t
s # of Sudoku matrices: s

Composition times t 1 2 ��� m

t = 0 24 48 ��� 24 m

t = 1 242 482 ��� (24 m)2

� � �
. . . �

t = j 24 j+1 48 j+1 ��� (24 m) j+1
3.3. More Sudoku associated bijections

It is well known that the composition of two bijective mapping is still a bijective mapping. In other words, if both f0 and f1

are two bijection on I × I, fnew = f0 ◦ f1 is also a bijection on I × I and so is fnew = f1 ◦ f0 . Therefore, we can even find more 2D

bijective mappings by simply composing two or more existent bijective mappings.

Table 3 shows the relations of the number of reference Sudoku matrices and the number of 2D bijective mappings. When

one Sudoku matrix is used for reference, six new matrix element representations can be found. Therefore, when m Sudoku
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matrices are used, there are 6 m Sudoku associated matrix element representations. Because a bijection can be constructed

between a Sudoku associated matrix element representation and one fixed representation, the number of available bijections

is 2 × 2 × 6 m = 24 m, where 6 m is the number of Sudoku associated matrix element representations, 2 is the number of

fixed matrix element representations, and 2 implies two possible ways to construct a bijection mapping either from the fixed

representation to the Sudoku associated one or from the Sudoku associated one to the fixed one.

Because the composition of two bijections is just a new bijection, we can define more bijections by involving function compo-

sitions. Without loss of generality, say we are interested in the number of bijections defined by t times of function compositions

from i bijections f1, f2, . . . , fi, i.e.

fi0◦i1 ···◦it = fi0
◦ fi1

. . . ◦ fit︸ ︷︷ ︸
t times

where i0, i1, . . . , it ∈ {1, 2, . . . , i}. It is not difficult to see that the total number of bijections by t times of compositions is it+1. For

each function fi j
with j ∈ {0, 1, . . . , t} we have i candidate functions and in total we have t + 1 functions to be determined. In

Table 3 we have 24 m of possible Sudoku associated matrix element representations and j times of compositions i.e. i = 24 m

and t = j, and thus the number of bijections involving j times of compositions is it+1 = (24m) j+1.

It is worthwhile to note that the number of bijections calculated in Table 3 includes self-mapping, i.e. fnew = f0 ◦ f1 with f1 =
f −1
0

. However, as long as the number of Sudoku matrices increases, the possibility of randomly composing a pair of bijections (one

is the inverse of the other) quickly approaches to zero. An alternative remedy to avoid self-mapping is to choose the two Sudoku

associated bijections with different reference Sudoku matrices, so that a new composed bijection from these two bijections is

impossible to be a self-mapping unless the two reference Sudoku matrices are identical.

4. Sudoku associated image scrambling scheme

In previous sections, we showed that given an N × N Sudoku matrix S for reference, there are six Sudoku associated matrix

element representations, namely the row-digit pair representation RS
(r,d)

, digit-row pair representation RS
(d,r)

, column-digit pair

representation RS
(c,d)

, digit-column pair representation RS
(d,c)

, block-digit pair representation RS
(b,d)

and digit-block pair represen-

tation RS
(d,b)

. Each Sudoku S associated matrix element representation RS
P

with P ∈ {(r, d), (d, r), (c, d), (d, c), (b, d), (d, b)} and a fixed

representation RF with F ∈ {(r, c), (b, g)} can be used to construct a pair of bijections f
RS

P
←RF

and f
RS

P
→RF

, where f
RS

P
←RF

denotes the

bijection mapping from the fixed representation RF to the Sudoku associated representation RS
P
, and f

RS
P
→RF

denotes the bijection

mapping from the Sudoku associated representation RS
P

to the fixed representation RF. Therefore, given a Sudoku matrix S and a

fixed representation RF, there are 24 Sudoku associated bijective mappings of f S
R→F

and f S
R←F

. To investigate their applications,

this section uses these 2D Sudoku associated bijections for digital image scrambling.

4.1. Sudoku associated image scrambler

Although a Sudoku associated image scrambler can be designed in various means, we design a Sudoku associated image

scrambler as shown in Fig. 7, where Key is an encryption key of 192-bit length, Parameter Generator generates key dependent and

round dependent parameters including a Sudoku associated 2D bijection f
RS

P
→RF

or f
RS

P
←RF

, Blockwise Scrambling shuffles pixels

within an N × N image block for every image block of the input image. Consequently, the image descrambling process is just the
Fig. 7. Flowchart of a Sudoku associated image scrambler; (a) scrambling process; (b) descrambling process.
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reverse of the scrambling process as shown in Fig. 7(b). In the following discussions, we consider an input image X is of size W ×
H with nB bit-depth.

Parameter Generator translates a scrambling key K to required parameters for image scrambling. Specifically, it takes

a scrambling key K to generate a set of parameters including twelve Sudoku associated matrix element representation

pairs Pi = {Pi
1
, Pi

2
, . . . , Pi

12
}, twelve fixed representation pair Fi = {F i

1
, F i

2
, . . . , F i

12
} and the twelve mapping parameters mi =

{mi
1
, mi

2
, . . . , mi

12
} for the ith bit-plane in X as shown in Algorithm 1. In this way, Parameter Generator guarantees that for each

Algorithm 1 Parameter Generator (Ri, Fi, mi) = BPG(K, i).

Require: K is a key of 192 bits composed of twenty-four subkeys {K(1), K(2), . . . , K(24)}
Require: i is the ith bit-plane to be processed

Ensure: (P, F, m) is a list of twelve pairs of Sudoku associated matrix element representation pairs, fixed matrix element repre-

sentation pairs, and mapping directions.

[K(1), K(2), . . . , K(24)] = K % Divide key K to twenty-four subkeys K(1), K(2), . . . , K(24)

Q = [Ki, Kmod(i+1,24)+1, . . . , Kmod(i+12,24)+1] % Extract a twelve element subkey sequence starting at K(i)

idx = sort(Q) % Sort this sequence Q and generate the element index sequence in the sorted sequence

for u = 1 : 1 : 12 do

q = idx( j) % For each index in idx, pair it to a (R, F) representations

if mod(q, 2) == 1 then

mi
u = 1

else

mi
u = 0

end if

if q == 1 then

Pi
u = (b, d), F i

u = (r, c)
end if

if q == 2 then

Pi
u = (b, d), F i

u = (b, g)
end if

if q == 3 then

Pi
u = (c, d), F i

u = (r, c)
end if

if q == 4 then

Pi
u = (c, d), F i

u = (b, g)
end if

if q == 5 then

Pi
u = (d, b), F i

u = (r, c)
end if

if q == 6 then

Pi
u = (d, b), F i

u = (b, g)
end if

if q == 7 then

Pi
u = (d, c), F i

u = (r, c)
end if

if q == 8 then

Pi
u = (d, c), F i

u = (b, g)
end if

if q == 9 then

Pi
u = (d, r), F i

u = (r, c)
end if

if q == 10 then

Pi
u = (d, r), F i

u = (b, g)
end if

if q == 11 then

Pi
u = (r, d), F i

u = (r, c)
end if

if q == 12 then

Pi
u = (r, d), F i

u = (b, g)
end if

end for
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bit-plane in X all six possible Sudoku associated matrix element representation pairs and two possible fixed representation pairs

are used in the twelve round scrambling. Meanwhile, these parameters are bit-plane dependent, implying different bit-planes

will be scrambled in a different way in the future processing.

Furthermore, Round Sudoku Generator takes the image size and the scrambler round u to generate an N × N Sudoku matrix as

shown in Algorithm 2.

Algorithm 2 Round Sudoku Generator Su = RSG(K, u,W, H).

Require: K is a key of 256 bits
Require: u is the cipher round number
Ensure: Su is an N × N Sudoku matrix

Ku = RoundKeyGenerator(K, u) % Generate a round key2

N = �√min (W, H)	 % Determine Sudoku size

Su = SudokuGenerator(Ku, N) % Generate an N × N Sudoku matrix

Consequently, a 2D Sudoku associated bijection f i
u can be found for the ith bit-plane in uth scrambler round as follows

f i
u =

{
f
R

Su

Pi
u

←F i
u
, if mi

u = 0

f
R

Su

Pi
u

→F i
u
, if mi

u = 1
(4)

Once the N × N parametric Sudoku associated 2D bijection f i
u is obtained for the ith bit-plane in the uth scrambler round, we

are then able to scramble image pixels with in N × N image within the W × H input image for all its bit-planes. In order to obtain

pixel shuffling between blocks, we apply an image shift function imageShift(.) for each cipher round as shown in Eq. (5).

Y = imageShift(X, w, h) =
[

X(w : W, h : H) X(w : W, 1 : h − 1)
X(1 : w − 1, h : H) X(1 : w − 1, 1 : h − 1)

]
(5)

Pseudo-code of Blockwise Scarmbling algorithm is given in Algorithm 3 in the MATLAB fashion. Consequently, we then shuffled

every N × N image blocks within the input image X.

Algorithm 3 Blockwise Scrambling Y = BlkScarmbling (X, fu, N, nB).

Require: I is an image of size W × H
Require: fu = { f 1

u , f 2
u , . . . , f nB

u } is a vector of nB bijections with each bijection for one bit-plane
Require: N is a squared integer
Require: nB is the number of bit-planes contained in image X
Ensure: Y is an scrambled image of X at the same size

nRow = 
W/N�
nCol = 
H/N�
w = 
W/12�
h = 
H/12�
X = imgShi f t(X, w, h) % shift image X w pixels along rows and h pixels along columns
for i = 1 : 1 : nRow do

if i˜ = nRow then
r0 = (i − 1)N + 1 % 1st row index of the current block
r1 = iN % last row index of the current block

else
r0 = W − N + 1 % 1st row index of the current block
r1 = W % last row index of the current block

end if
for j = 1 : 1 : nCol do

if j˜ = nCol then
c0 = ( j − 1)N + 1 % 1st column index of the current block
c1 = jN % last column index of the current block

else
c0 = H − N + 1 % 1st column index of the current block
c1 = H % last column index of the current block

end if
tBlk = I(r0 : r1, c0 : c1) % extract the current block
tmp = 0 % create a temporary intermediate variable
for l = 1 : 1 : nB do

tBP = bitget(tBlk, l) % extract the uth bit-plane

oBP(r0 : r1, c0 : c1) = f l
u(tBP) % output scrambled bit-plane

tmp = tmp + oBP · 2l−1 % store results in temporary variable
end for
Y(r0 : r1, c0 : c1) = tmp % output scrambled block

end for
end for

In order to scramble an arbitrary W × H image without bandwidth expansion, we scramble blocks on the edge with a certain

amount of overlapping with previous blocks as shown in Fig. 8. The block indices listed in Fig. 8 indicate the processing order
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Fig. 8. Overlapped blocks in Blockwise Scrambling.

(a) (b) (c) (d) (e)

Fig. 9. Discussion of Image scrambling results; (a) image Trees; (b) scrambled image after one round fRS
(b,d)

→R(b,g)
; (c) scrambled image after twelve rounds

fRS
(b,d)

→R(b,g)
; (d) scrambled image after twelve rounds fRS

(b,d)
→R(b,g)

with image shifting; and (e) scrambled image after twelve rounds scrambling in Sudoku Associated

Image Scrambler.
of Blockwise Scrambling, implying to first shuffle image pixels in the upper-left block marked as index 1 in the figure, then block

2, block 3, so on and so forth until block 6. Since W and H may not be necessarily to be divisible by N, we process blocks on

the image edge with overlapping, e.g. block 2 and 3 are overlapped, and block 3 and block 6 are also overlapped. In summary,

there are OH × OW pixels belongs to more than one block to be processed. In this way, we are able to fit a 2D Sudoku associated

bijection defined on I × I for an input image with an arbitrary size W × H without bandwidth expansion.

In regarding of descrambling, we can simply substitute a certain Sudoku associated bijection with its inverse. In other words,

if the bijection used for scrambling is f
RS

P
←RF

, then the bijection used for descrambling is f
RS

P
→RF

, and vice versa.

4.2. Discussions

Sudoku Associated Image Scrambler is a multiround scrambler that shuffles image pixels with respect to one Sudoku associated

bijection for each round. This multiround scrambling process is equivalent to create a new bijection by taking the function

composition of multiple bijections, which is discussed in Section 3.3. It is not difficult to validate such equivalence between the

multiround Sudoku associated image scrambler and the bijection by composing multiple bijections. Without loss of generality,

denote the twelve 2D Sudoku associated bijections for the ith bit-plane are f i
1
, f i

2
, . . . , f i

12
in Sudoku Associated Image Scrambler.

Then running the scrambler for multiple times is nothing but to construct a new bijection fnew as follows.

fnew(x, y) = f i
12( f i

11( · · · f i
2( f i

1(x, y)))) = f i
12 ◦ f i

11 · · · ◦ f i
2 ◦ f i

1(x, y) (6)

which is actually the composition of the twelve bijections.

Meanwhile, we want to emphasize that the Sudoku associated bijections used in Sudoku Associated Image Scrambler from

one round to another is not independent, but dependent in the sense that in the twelve round the fixed representation R(r, c)

and R(b, g) appears exact six times respectively and the six Sudoku associated representations appears exact twice for each. We

set up this constraint to guarantee the strong scrambling effect. Although different Sudoku associate bijections have different

scrambling impact on an image, many of them are of limited scrambling effect in the sense that scrambled images are not

random-like as shown in Fig. 6. Therefore, if we allow random Sudoku associated bijections for each round, it is possible to

pick twelve identical Sudoku associated matrix element representation pairs, i.e. P1 = P2 = · · · = P12 and also twelve identical

fixed representation pairs F1 = F2 · · · = F12. Although the reference Sudoku changes for each round, the scrambled image might

not change that much. Fig. 9 shows an example of using bijection f
RS
(b,d)

→R(b,g)
for image scrambling. As this mapping implies,

it only scrambles pixels within a Sudoku block. And thus scrambled image gets blurry soon after applying this bijection once.

Consequently, the scrambled image after applying this bijection twelve times shown in Fig. 9(c) is more or less the same as the

previous, indicating that simply composing a number of Sudoku bijections does not necessarily improves scrambling quality.

Fig. 9(d) shows the scrambled image with additional image shifting operation defined in Eq. (5). This result shows that this

operation does help improve scrambling quality by generating a more evenly distributed scrambled image. Fig. 9(e) shows the

scrambled image using the twelve round Sudoku Associated Image Scrambler (in this particular case we consider image Trees to

be bit-depth 1), which is completely unrecognizable and random-like.
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In regarding of scrambler security, we suggest to change a scrambler key K frequently. Because an image scrambler itself is not

semantically secure and is vulnerable under certain attacks, for example, a simple but effective algorithm based on the chosen

plaintext attack (CPA) model could be described as follows,

1. Construct a all-zero image X of size W × H except the pixel Xi, j �= 0

2. Scramble this image X by using an image scrambler and a unknown key K and obtain scrambled image Y

3. Find out nonzero value pixel in Y and record its position (ridx, cidx) as the output of a bijection f, i.e. f (i, j) = (ridx, cidx), where

idx = (i − 1)H + j

4. Repeat the above three steps by changing the position of the none-zero pixel in X, for all i ∈ {1, 2, . . . , H} and j ∈ {1, 2, . . . ,W}
Consequently, the bijective mapping f is the equivalent bijection of the used scrambler for a W × H image under the key K. In

other words, all W × H images scrambled by the used image scrambler under key K can be perfectly cracked by inverse mapping

scrambled image pixels using mapping f −1. And the complexity of the above attack is W × H.

It is worthwhile to note that the above attack is a generic attack for all image scramblers. However, one remedy to this

type of attacks is to change encryption key frequently for a scrambler. For example, say we use the Sudoku Associated Image

Scrambler for high-definition television (HDTV) with the format 1080p, namely 1920 × 1080 pixels per frame. Then an adversary

need to take 1080 × 1920 = 2073600 frames for fully crack an scrambling key K. We therefore set up a key change for every

518400 = 2073600/4 frames, which is equivalent to 6 h of HDTV programs if the frame rate is 24 frames per second. As a result,

an adversary may at most recover 25% of pixels in a HDTV frame, which is definitely of poor visual quality.

5. Analysis and comparison results

Digital image scrambling is to rearrange image pixels in a deterministic way but with a random-like appearance. In this

section we focus our effects on performance analysis and comparisons for the Sudoku Associated Image Scrambler.

5.1. Experiment settings

The following simulations are all performed under the Windows 7 operation system with the Intel Core2 CPU @2.66GHz and

6GB memory. In order to make easy comparisons, we run our Sudoku Associated Image Scrambler on test images (8-bit grayscale)

whose scrambling results are widely reported and compare our results with other peer algorithms including the scrambling

method based on 2D cellular automata proposed by Abu Dalhoum et al. [4], the scrambling method based on chaos map proposed

by Ye [25], the scrambling method of using cellular automata proposed by Ye et al. [28], and the scrambling method based

on ASCII code of matrix element proposed by Ye et al. [26]. These test images includes Cameraman, Barbara, Lenna, and test

images #157055, #69015 and #239096 in the Berkeley image segmentation dataset2 [17]. Since the results about these test

images have been previous reported, we make comparison of the proposed scrambler with peer methods by analyzing these test

images.

Additionally, we also test the performance of the proposed scrambler on other image types than (8-bit grayscale) to validate

that the proposed scrambler is able to deal with an image with an arbitrary bit depth, including binary images CCITT-3 and CCITT-

7 from the CCITT fax image compression dataset 3, 16-bit grayscale knee MRI images, and color images 4.2.03 and 4.2.07 from the

USC-SIPI miscellaneous image dataset4.

Details about these test images and results with analysis and comparisons are presented in next sections.

5.2. Simulation results

Fig. 10 shows the simulation results of the proposed image scrambling method using the 2D Sudoku associated bijections

with peer algorithms [4,25]. As can be seen from these results, the proposed method outperforms the two recently proposed

algorithms, in the sense that its scrambled image is random-like and pixels more evenly scrambled, while results of Van De Ville

et al.’s method [20] contain distinguishable patterns of foreground from background; results of Abu Dalhoum et al.’s method

[4] contain line-like patterns and results of Ye’s method [25] are of mesh-like patterns. Furthermore, it is noticeable that Abu

Dalhoum et al.’s method might require extra space to deal with the edge effect in cellular automata (see results on the 2nd

column), while the chaos map used Ye’s method might be not that dynamic and generates weak results (see Ye’s result on test

image #239096).

Besides the 8-bit grayscale images listed in Fig. 10, we also test the proposed method on various image types including binary

images CCITT-3 and CCITT-7 from the CCITT fax image compression dataset4, 16-bit grayscale knee MRI images, and color images

4.2.03 and 4.2.07 from the USC-SIPI miscellaneous image dataset5. Scrambling results are given in Fig. 11.

In regard of the detail information about these test images including processing time and speed, we list these relevant in-

formation in Table 4. Roughly speaking, the speed of the proposed scrambler is about 150 KB/s, or 0.15 MB/s equivalently under
2 This dataset is free for non-commercial research and educational purposes, available under http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
3 The CCITT database can be found under page: http://cdb.paradice-insight.us
4 The USC-SIPI image database can be found on http://sipi.usc.edu/database/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://cdb.paradice-insight.us
http://sipi.usc.edu/database/
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Fig. 10. Image scrambling results with visual comparisons; 1st column: test images (from 1st row to the last are Cameraman, Barbara, Lenna, and

#157055, #69015 and #239096); 2nd column: simulation results of Van De Ville et al.’s method [20]; 3rd column: simulation results of Abu Dalhoum et al.’s

method [4]; 4th column: simulation results of Ye’s method [25]; and 5th column: simulation results of ours.
MATLAB environment. It is worthwhile to note that this speed can be largely enhanced by using parallel computations, because

the scrambling process of each bit-plane is independent of each other and image blocks that not overlapped are also independent

of each other, both of which implying these works can be done in parallel to save time. Meanwhile, it is well-known that MATLAB

is very slow for for-loop execution, and thus implementing the proposed scrambler in other languages might further enhance the

processing speed. Therefore, the proposed scrambler with a proper implement could meet the demand for real time processings.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11. Image scrambling results on various image types using Sudoku associated image scrambler; (a) and (b) CCITT-3 before and after scrambling; (c) and (d)

CCITT-7 before and after scrambling; (e) and (f) knee MRI sample A before and after scrambling; (g) and (h) knee MRI sample B before and after scrambling; (i) and

(j) 4.2.03 before and after scrambling, and (k) and (l) 4.2.07 before and after scrambling.
5.3. Gray difference and gray degree of scrambling

Gray difference and gray degree of scrambling (GDD) [28] are two measures used for quality evaluation of scrambled images.

The gray difference for a W × H image X is defined as follows,

GDX
i, j = 1

4

∑
p,q∈{−1,+1}

(
Xi, j − Xi+p, j+q

)2
(7)

Further, the mean gray difference of image X is computed by averaging all pixels except those on image edges as shown in

Eq. (9).

EGDX
i, j =

W−1∑
i=2

H−1∑
j=2

GDX
i, j

(W − 2)(H − 2)
(8)
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Table 4

Test images information with execution speed.

Test image information Execution information

Image file Width Height Bit depth Time(s) Speed(KB/s)

Cameraman 256 256 8 2.8280 181.0467

Barbara 256 256 8 2.9266 174.9470

Lenna 256 256 8 3.0336 168.7764

#157055 321 481 8 5.0176 240.4053

#69015 481 321 8 4.6216 261.0044

#239096 321 481 8 4.6537 259.2040

CCITT-3 2339 1728 1 31.4804 125.3816

CCITT-7 2339 1728 1 32.8107 120.2980

Knee MRI Sample A 448 448 16 21.1253 148.4476

Knee MRI Sample B 448 448 16 21.1838 148.0377

4.2.03 512 512 24 31.1277 197.3805

4.2.07 512 512 24 32.4009 189.6244

Table 5

Gray scrambling degree of scrambled images.

Method Test Images

Cameraman Barbara Lenna #157055 #69015 #239096

Van De Ville et al.’s [20], 2004 0.1315 0.1930 0.1353 0.2752 0.5397 0.4502

Ye et al.’s [26], 2007 0.8832 N\A 0.9010 0.8780 0.8646 0.8976

Ye et al.’s [28], 2008 0.8926 0.8740 0.9311 0.8731 0.8789 0.9134

Abu Dalhoum et al.’s [4], 2012 0.8971 0.8749 0.9320 0.8821 0.8827 0.9388

Ye’s [25], 2010 0.9118 0.9176 0.9618 0.9218 0.9406 0.9670

Ours 0.9165 0.9200 0.9663 0.9359 0.9439 0.9672
Finally, the gray degree of scrambling is defines as the ratio of the difference of the mean gray differences before and after

scrambling image X to their sum, namely

GGDX,X ′
i, j

=
|EGDX

i, j
− EGDX ′

i, j
|

EGDX
i, j

+ EGDX ′
i, j

(9)

Table 5 compares the gray degree of scrambling of the proposed method with peer algorithms [4,20,25,26,28]5. As can be

seen, the proposed method outperforms the listed peer algorithm by achieving a higher gray degree of scrambling.

5.4. Adjacent pixel autocorrelation

A digital image is commonly of high information redundancy in the sense that adjacent pixels are strongly correlated. In

contrast, a well scrambled image should break such correlations between neighbor pixels, so that the scrambled image is unrec-

ognizable. For example, one can simply plot a pixel correlation figure as shown in Fig. 12, where each subfigure illustrating the

adjacent pixel correlations before and after scrambling image Lenna by plotting the intensity values of 1024 random select pixels

as x coordinates, intensity values of their horizontal neighbors as y coordinates, and intensity values of their vertical neighbors

as z coordinates. It is obvious that before scrambling adjacent pixels in image Lenna are close correlated and thus the plots con-

centrates on the diagonal direction, namely the line x = y = z. In contrast, after scrambling the plot of the same set of adjacent

pixels speared almost everywhere.

Adjacent pixel autocorrelation coefficient (APCC) is a common measure used in signal process and image encryption

[22–24,27,30]. Mathematically, we can define this autocorrelation coefficient as follows:

ρ = E[(Xt − μ)(Xt+1 − μ)]/σ 2 (10)

where Xt denotes the tth element in signal X, E(.) denotes the mathematica expectation as shown in Eq. (11), μ is the expectation

namely the mean value defined in Eq. (12), and σ denotes the standard deviation defined in Eq. (13).

E[Y ] =
N∑

i=1

Yi/N (11)

μ = E[X] (12)
5 Results of Ye et al.’s [26], 2007, Ye et al.’s [28], 2008 and Abu Dalhoum et al.’s [4] are directly taken from listed results in [4].
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Fig. 12. Adjacent pixel correlations before and after Sudoku associated image scrambling for image Lenna; (a) before scrambling; and (b) after scrambling. Point

colors reflect the distance between a point and the line x = y = z. The closer a point to this line, the bluer the color is.

Table 6

Horizontal adjacent pixel correlation coefficients of scrambled images.

Horizontal APCC Test images

method Cameraman Barbara Lenna #157055 #69015 #239096

Before scrambling 0.9565 0.9238 0.9709 0.9522 0.9613 0.9796

Van De Ville et al.’s [20], 2004 0.6967 0.6974 0.7156 0.6963 0.7099 0.7005

Abu Dalhoum et al.’s [4], 2012 0.0184 −0.0629 −0.0204 −0.0254 0.1564 0.1771

Ye’s [25], 2010 0.0827 0.0398 0.2130 0.2270 0.0359 −0.0372

Ours −0.0020 −0.0015 −0.0021 0.0024 −0.0025 −0.0017

Table 7

Vertical adjacent pixel correlation coefficients of scrambled images.

Vertical APCC Test images

method Cameraman Barbara Lenna #157055 #69015 #239096

Before scrambling 0.9333 0.8797 0.9400 0.9475 0.9570 0.9739

Van De Ville et al.’s [20], 2004 0.6613 0.6699 0.6741 0.6690 0.6785 0.6865

Abu Dalhoum et al.’s [4], 2012 0.0543 0.0172 0.0476 0.0376 0.2162 0.2314

Ye’s [25], 2010 0.2808 0.0598 −0.0955 0.1015 0.0860 −0.0329

Ours −0.0033 −0.0031 0.0016 −0.0004 0.0012 0.0040
σ =
√

E[(X − μ)2] (13)

Consequently, less correlated adjacent pixels within image X are, the closer ρ approaches zero. In contrast, if adjacent pixels

within image X are completely dependent, then |ρ| = 1.

Commonly the adjacent pixels in image can be defined along the horizontal direction and the vertical direction, respectively.

Equivalently, we extract scrambled image pixels along rows and along columns respectively and compare the autocorrelation

coefficients for these two pixel sequences. Results are given in Tables 6 and 7. It is not difficult to see that the proposed method

outperforms the three peer algorithms again.

It is also well-known that whether an observed autocorrelation coefficient ρ is significantly different from zero can be tested

by Student’s t-distribution [5,14,15]. Specifically in [14], it states that “if the true correlation between X and Y within the general

population is zero, and if the size of sample T, on which an observed value ρ is based is equal to or greater than 6, then the

quantity t defined by Eq. (14)

t = ρ

√
T − 2

1 − ρ2
(14)
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is distributed approximately as a Student’s t-distribution with T − 2 degrees of freedom”, where Student’s t-distribution has the

probability density function given by Eq. (15), where v is the number of degrees of freedom and �(.) is the Gamma function.

g(t) =
�
(

v+1
2

)
√

vπ�
(

v
2

)(
1 + t2

v

)− v+1
2

(15)

Therefore, given an autocorrelation coefficient of an W × H image X, it is not difficult to verify whether its adjacent pixels are

correlated or not by taking the test statistic t for two-sided hypothesis tests. Specifically, one can calculate the P-value of a sample

correlation coefficient ρ by finding its P-value under the null hypothesis that the derived statistic t from ρ follows a Student’s

t-distribution, where the P-value of a given test statistic t is computed as follows

P − value(t) = 2

∫ −|t|

−∞
g(τ )dτ (16)

Statistically speaking, a P-value is a measure of how much evidence we have under the null hypothesis. In other words, the

smaller P-value the more evidence we have against the hypothesis. The range of a P-value is [0, 1].

In our situation, the sample size T is the number of pixels within image X, which is T = WH. Consequently, test statistic t can

be derived by the autocorrelation coefficient ρ and T using Eq. (14). As a result, corresponding P-value results can be calculated

for the autocorrelation coefficients of the scrambled image using the proposed method. These results are shown in Table 8. It

is clear that these P-values are much greater than 5%, which is a common critical value used in statistics implying to reject the
Table 8

P-values of adjacent pixel correlation coefficients.

Test images

Statistics Cameraman Barbara Lenna #157055 #69015 #239096

size 256 × 256 256 × 256 256 × 256 481 × 321 321 × 481 481 × 321

Degree of freedom v 65534 65534 65534 154399 154399 154399

APCC ρhorizontal −0.0020 −0.0015 −0.0021 0.0024 −0.0025 −0.0017

Statistic thorizontal −0.5120 −0.3840 −0.5376 0.9431 −0.9823 −0.6680

P-value Phorizontal 60.84% 70.10% 58.08% 34.56% 32.60% 50.42%

APCC ρvertical −0.0033 −0.0031 0.0016 −0.0004 0.0012 0.0040

Statistic tvertical −0.8448 −0.7936 0.4096 0.1572 0.4715 −1.5718

P-valuePvertical 37.62% 42.74% 68.22% 87.50% 63.62% 11.60%

(a) (b) (c)

(d) (e) (f)

Fig. 13. Key sensitivities of Sudoku Associated Image Scrambler; (a) image 4.02.03; (b) scrambled image Ya using Ka; (c) scrambled image Yb using Kb; (d) difference

image of |Ya − Yb|; (e) descrambled image of Ya using Ka; and (f) descrambled image of Ya using Kb .



108 Y. Wu et al. / Information Sciences 327 (2016) 91–109
null hypothesis if a P-value is less than 5%, while accept the null hypothesis otherwise. Therefore, these results indicate that the

correlation coefficient between adjacent pixels in the scrambled image using the proposed method are indeed zeros. In other

words, the proposed method successfully breaks the strong correlations between adjacent pixels after scrambling.

5.5. Key space and key sensitivity

A good image scrambler should have a sufficiently large key space to resist brute-force attacks. Sudoku Associated Image Scram-

bler is designed to be of 192-bit length, which is considered sufficiently large to be immune to this type of attacks with respect

to the current computer capacities. on the other hand, this key space can be easily extended because the number of possible

Sudoku matrices are extremely huge. A lower bound of the number of 256 × 256 Sudoku matrices is 256! ≈ 21684. Considering

that majority of digital image files are larger than 256 × 256, the number of Sudoku matrices at larger sizes are even huge.

In addition, a good scrambler should have high sensitivity to scrambler key. This has a two-folded meanings: a slight key

change should lead to significant change in scrambled images during scrambling process, and also significant change in de-

scrambled images during descrambling process. Fig. 13 shows the key sensitivity of Sudoku Associated Image Scrambler, with two

keys Ka and Kb differentiate from each other only for one bit. As can be seen, one bit change in scrambling key leads to two

different scrambled images, whose difference image is also random-like. And descrambling using an incorrect key which is just

one bit different from the correct key leads to random-like image.

Ka = B697F2703EA4347A85D997FB18A1FC3CE7E6901B6A9AE5EA

Kb = A697F2703EA4347A85D997FB18A1FC3CE7E6901B6A9AE5EA

6. Conclusion

In this paper, we mainly discussed the Sudoku associated 2D bijections and applications for image scrambling. We showed

that these bijections are can be defined by Sudoku associated matrix element representations, which provide additional and

parametric means to denote matrix elements besides the conventional way of using the row-column pair. Specifically, these

new Sudoku associated matrix element representations are row-digit pair, digit-row pair, column-digit pair, digit-column pair,

block-digit pair, and digit-block pair.

Since all these Sudoku associated matrix element representations are parametric with respect to a reference Sudoku matrix,

it then allows us to denote matrix elements in secret ways and further provides Sudoku matrix dependent 2D bijections con-

structed by mapping from one representation to the other. We showed that many of these Sudoku associated 2D bijections have

deterministic scrambling effect when we use them for image scrambling. For example, the bijection mapping from row–column

pair to row-digit pair is equivalent to scramble pixels within a row to different positions that none two pixels that originally lies

in the same column is still in the same column after scrambling; the bijection mapping from block-grid pair to block-digit pair is

equivalent to scramble pixels within each block and cause a mosaic-like effect.

Furthermore, we proposed Sudoku Associated Image Scrambler, a simple but effect digital image scrambler of using these Su-

doku associated 2D bijections, by using a scrambling key to control these bijections in a parametric way. Because a multiround

scrambler is mathematically equivalent to a new bijection composed of a series of bijections in each scrambler round, we showed

that these fundamental Sudoku associated 2D bijections can be cascaded together to scramble image pixels in a deterministic

way. Simulation results of the proposed image scrambler and comparisons to recent peer algorithms indicate that Sudoku As-

sociated Image Scrambler outperforms or atleast reaches state-of-the-art suggested by these peer algorithms [4,25,26,28] with

respect to a number of evaluation and analysis methods, including human visual inspections, gray degree of scrambling, and

autocorrelation coefficient of adjacent pixels. Moreover, statistical tests also support that Sudoku Associated Image Scrambler does

break the strong correlations between adjacent pixels to zero correlations after scrambling.
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